Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 6(5): 1801337, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886792

RESUMO

Ionogels are a new class of promising materials for use in all-solid-state energy storage devices in which they can function as an integrated separator and electrolyte. However, their performance is limited by the presence of a crosslinking polymer, which is needed to improve the mechanical properties, but compromises their ionic conductivity. Here, directional freezing is used followed by a solvent replacement method to prepare aligned nanocomposite ionogels which exhibit enhanced ionic conductivity, good mechanical strength, and thermal stability simultaneously. The aligned ionogel based supercapacitor achieves a 29% higher specific capacitance (176 F g-1 at 25 °C and 1 A g-1) than an equivalent nonaligned form. Notably, this thermally stable aligned ionogel has a high ionic conductivity of 22.1 mS cm-1 and achieves a high specific capacitance of 167 F g-1 at 10 A g-1 and 200 °C. Furthermore, the diffusion simulations conducted on 3D reconstructed tomography images are employed to explain the improved conductivity in the relevant direction of the aligned structure compared to the nonaligned. This work demonstrates the synthesis, analysis, and use of aligned ionogels as supercapacitor separators and electrolytes, representing a promising direction for the development of wearable electronics coupled with image based process and simulations.

2.
Sci Rep ; 9(1): 3973, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850714

RESUMO

4D printing has the potential to create complex 3D geometries which are able to react to environmental stimuli opening new design possibilities. However, the vast majority of 4D printing approaches use polymer based materials, which limits the operational temperature. Here, we present a novel multi-metal electrochemical 3D printer which is able to fabricate bimetallic geometries and through the selective deposition of different metals, temperature responsive behaviour can thus be programmed into the printed structure. The concept is demonstrated through a meniscus confined electrochemical 3D printing approach with a multi-print head design with nickel and copper used as exemplar systems but this is transferable to other deposition solutions. Improvements in deposition speed (34% (Cu)-85% (Ni)) are demonstrated with an electrospun nanofibre nib compared to a sponge based approach as the medium for providing hydrostatic back pressure to balance surface tension in order to form a electrolyte meniscus stable. Scanning electron microscopy, X-ray computed tomography and energy dispersive X-ray spectroscopy shows that bimetallic structures with a tightly bound interface can be created, however convex cross sections are created due to uneven current density. Analysis of the thermo-mechanical properties of the printed strips shows that mechanical deformations can be generated in Cu-Ni strips at temperatures up to 300 °C which is due to the thermal expansion coefficient mismatch generating internal stresses in the printed structures. Electrical conductivity measurements show that the bimetallic structures have a conductivity between those of nanocrystalline copper (5.41 × 106 S.m-1) and nickel (8.2 × 105 S.m-1). The potential of this novel low-cost multi-metal 3D printing approach is demonstrated with the thermal actuation of an electrical circuit and a range of self-assembling structures.

3.
Materials (Basel) ; 11(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388856

RESUMO

Lithium-based rechargeable batteries such as lithium-ion (Li-ion), lithium-sulfur (Li-S), and lithium-air (Li-air) cells typically consist of heterogenous porous electrodes. In recent years, there has been growing interest in the use of in-situ and operando micro-CT to capture their physical and chemical states in 3D. The development of in-situ electrochemical cells along with recent improvements in radiation sources have expanded the capabilities of micro-CT as a technique for longitudinal studies on operating mechanisms and degradation. In this paper, we present an overview of the capabilities of the current state of technology and demonstrate novel tomography cell designs we have developed to push the envelope of spatial and temporal resolution while maintaining good electrochemical performance. A bespoke PEEK in-situ cell was developed, which enabled imaging at a voxel resolution of ca. 230 nm and permitted the identification of sub-micron features within battery electrodes. To further improve the temporal resolution, future work will explore the use of iterative reconstruction algorithms, which require fewer angular projections for a comparable reconstruction.

4.
Adv Sci (Weinh) ; 3(3): 1500332, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27610334

RESUMO

Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high-speed operando synchrotron X-ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real-time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral-wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time-lapse X-ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs.

5.
Faraday Discuss ; 192: 217-240, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27472014

RESUMO

Carbon capture and storage (CCS) offers a possible solution to curb the CO2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO2 capture, such as the CaO-CaCO3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions.

6.
J Microsc ; 263(3): 280-92, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26999804

RESUMO

Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity.

7.
Chem Commun (Camb) ; 51(2): 266-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24898258

RESUMO

The electrodeposition of metallic lithium is a major cause of failure in lithium batteries. The 3D microstructure of electrodeposited lithium 'moss' in liquid electrolytes has been characterised at sub-micron resolution for the first time. Using synchrotron X-ray phase contrast imaging we distinguish mossy metallic lithium microstructures from high surface area lithium salt formations by their contrasting X-ray attenuation.


Assuntos
Galvanoplastia , Imageamento Tridimensional , Lítio/química , Galvanoplastia/métodos , Imageamento Tridimensional/métodos , Síncrotrons , Raios X
8.
J Synchrotron Radiat ; 21(Pt 5): 1134-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25178003

RESUMO

A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...